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Abstract-A variational formulation of the problem of unsteady-state heat conduction is presented. A 
non-linear functional obtained as a result of a thermodynamic analysis of the processes of heat transfer in 
unsteady-state systems is suggested. The variational calculational method can he used for solving problems 
with a strong non-linearity for which finite-difference schemes do not allow one to obtain satisfactory 
results. To simplify the presentation, a non-linear one-dimensional problem is considered as an example. 
The functional can be generalized to the case of three-dimensional problems, as well as transformed for 
other coordinate systems. A technique for calculating the approximation error in variational calculus is 
suggested that makes it possible to determine approximations to the solution from below and from above. 
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IINTRODUCTION 

Calculations show that variational methods show 
promise for solving complex non-linear problems of 
unsteady-state heat conduction in which the ther- 
mophysical properties of substance or heat sources 
depend greatly on temperature. Application of vari- 
ational schemes in these problems makes it possible 
to considerably improve solution approximations [ 1, 
21. The methods of variational calculus usually used 
do not allow one to determine the functional which 
has an extremum at the solution of non-linear non- 
stationary heat conduction problems. Therefore, the 
present paper suggests a new principle for con- 
structing such a functional based on the ther- 
modynamic analy,sis of arbitrary variations of the 
solution. 

In this paper a method for approximating solutions 
is presented that enables one to take into account all 
the possible errors of a variational calculating scheme. 
Residuals of a differential heat conduction equation 
and boundary conditions are considered as fictitious 
heat sources in a thermodynamic system. In this case 
variations of the solution are the result of the effect 
of all the fictitious sources, and the approximating 
functions will be the solutions of the problem with 
fictitious sources that is physically meaningful. Under 
these conditions, based on the first law of ther- 
modynamics, the heat balance equation for fictitious 
sources can be constructed. In view of the fact that at 
present the methods for estimating an error in discrete 
approximations of solutions are absent, a method is 
suggested for determining approximations to the 
problem solution from below and from above. These 
approximations are calculated on the basis of the first 
law of thermodynamics using the heat balance equa- 
tion for fictitious sources. Variational calculus shows 

that approximation errors in this case can be dimin- 
ished by an order of magnitude or more as compared 
to finite-difference schemes. 

It should be noted that frequently, when finite- 
difference schemes are used in non-linear non-station- 
ary heat conduction problems, all the attempts to 
estimate the obtained results by studying the con- 
vergence of approximations to the solution turn out 
to be ineffective. One succeeds in proving the con- 
vergence of discrete approximations only for simple 
physical conditions and under substantial restrictions 
on the choice of approximating functions. Moreover, 
some restrictions, in particular the requirement of con- 
tinuity of derivatives in the region, cannot often be 
fulfilled, thus leading to great approximation errors 
not amenable to quantitative estimation. 

The variational method presented makes it possible 
to solve problems with a strong non-linearity inside 
the region and at the boundaries for the conditions 
under which other methods do not allow one to obtain 
satisfactory results, e.g. the action of powerful sources 
or explosion on a surface, change of a phase state, 
non-linear problems under non-symmetric conditions 
of heat transfer at the boundaries. Multidimensional 
problems can also be solved by the corresponding 
functional obtained for these conditions [ 11. The solu- 
tion of a system of equations for calculating unknown 
coefficients is always stable. The solution is approxi- 
mated by broken curves, which are formed by piece- 
wise-smooth elements in spatial and temporal regions, 
similarly to spline approximation. 

THERMODYNAMIC JUSTIFICATION OF THE 
VARIATIONAL METHOD 

A thermodynamic analysis shows that the direc- 
tivity of any spontaneous processes of heat transfer in 
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NOMENCLATURE 

coefficient determining the function 
W) W’l 
relative initial temperature 
first variation of the functional 
[w mm2 K] 
second variation of the functional 
[w m-* K] 
residual of heat conduction equation 
W mm31 
approximating function 
approximation to 9 from below 
approximation to 9 from above 
solution of problem 
thermal conductivity [w m-’ K-‘1 
initial value of L(S) [w m-’ K-‘1 
determined coefficient 
determined coefficient 
density [kg m-‘1 
time [s] 
determined coefficient 
new thermodynamic function 
[J mm3 K]. 

a closed thermodynamic system towards equilibrium 
with the environment, can be used as a principle for 
constructing the functional of the problem of 
unsteady-state heat conduction. In accordance with 
the second law of thermodynamics, only spontaneous 
processes bringing the system closer to thermal equi- 
librium with the environment are possible in a non- 
stationary thermodynamic system. Therefore, the sys- 
tem will approach the state of equilibrium with a cer- 
tain speed that is maximum for the assigned initial 
and boundary conditions. 

The solution will be varied so that during the pre- 
ceding time instants fictitious sources could exist that 
would increase the non-equilibrium condition in the 
system and at the boundaries relative to real processes. 
Then, under the assigned initial and boundary con- 
ditions, as a result of the action of such sources, the 
speed of the approach of the system to the equilibrium 
state will decrease. In a system involving sources, the 
time corresponding to the fixed temperature at some 
space points, will be greater than the time cor- 
responding to the same temperature in a real system 
without fictitious sources. This means that in a certain 
class of approximating functions a variational func- 
tional can be determined so that at the extremal point 
of the functional corresponding to the solution the 
system approaching the equilibrium state will have 
the highest speed relative to the system with fictitious 
sources. If a variational problem has a solution, then 
the existence of a class of functions is always possible 
in which the maximum speed of the approach to the 
equilibrium state will correspond to the solution, 

since, according to the second law of thermodynamics, 
a real system only has the processes that bring the 
system to equilibrium. 

The variational calculus shows that in problems of 
cooling the speed of the system approaching equi- 
librium with the environment, determined from the 
conditions of the existence of extremum, can be 
maximum at some points for the solution of the prob- 
lem relative to the same speed for a problem with 
fictitious sources. The same extremum will also be 
present in problems of heating, if transformation of 
the coordinate system is made. The origin of the heat 
source should be shifted so that the problem of heating 
can be reduced to the problem of cooling [3]. For 
non-linear conditions the moduli of heat fluxes in the 
problem of cooling should be kept the same as the 
moduli of heat fluxes in the problem of heating prior 
to the transformation of coordinates. Hence, the speed 
of the approach to equilibrium, calculated from the 
conditions of the existence of the extremum and deter- 
mined by the value of the derivatives 9:, can also be 
maximum for the solution. This suggests that the func- 
tional expresses a physically existing directivity of 
spontaneous processes to equilibrium and also testifies 
to the adequacy of physical and mathematical models 
from the viewpoint of the second law of ther- 
modynamics. 

Allowing for the statistical character of heat trans- 
fer in macrosystems, the existence of the maximum 
speed of the approach of the system to equilibrium in 
a certain class of functions could be checked, if it 
could be found that under steady-state conditions the 
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temperature distribution corresponding to the prob- 
lem solution would be the most probable with respect 
to arbitrary approximations to the solution from 
below and from above. Since such a verification can- 
not be made, there is good reason to assume that the 
existence of the extremum following from the second 
law of thermodynamics, to which a certain maximum 
speed of the approach to equilibrium corresponds, 
cannot be determined with the aid of any theoretical 
propositions or formal arguments and, just as the 
second law, should be justified as a result of obser- 
vations of physical objects. Therefore, for the problem 
considered the verification of the existence of the 
extremum in a certain class of functions should be 
performed by calculations during the minimization of 
arbitrary small variations of the solution. 

In the case of discrete approximations large errors 
appear in non-linear problems due to the fact that 
at the nodal points of the system one can use only 
numerical values of the thermal conductivity 1 and 
heat capacity c, that are to be averaged in a certain 
arbitrary manner which prevents one from taking into 
account the effect of the functions n(g) and c(S) in the 
region. In variational calculus these functions are used 
directly in the functisonal, and their effect is determined 
by integration, i.e. not only at the nodal points, but 
also over the region., considerably improving the solu- 
tion approximatiom as shown by calculations. 

The approximating functions are selected so that 
not only fictitious sources can be minimized, but that 
their mutual effect can be compensated. When using 
a variational method, all the possible fictitious heat 
sources in the system are taken into account, and 
therefore the problem with fictitious sources is solved 
correctly. This enables us to use the first law of ther- 
modynamics in the analysis of the variational solution 
and thus to determine the range of approximations 
within which the :solution exists. The calculations 
show that in the calse of an insufficiently good min- 
imization of errors the functional extremum can exist 
on the solution of another problem with fictitious 
sources which differs from the problem being solved 
without such sources. Therefore, it is expedient to 
check the existence of the extremum after the min- 
imization of errors. This can be used as an additional 
means for controlling the results obtained. 

VARIATIONAL FIJNCTIONAL FOR NON-LINEAR 

PROBLEMS OF HEAT CONDUCTION 

The solution of the non-linear problem 9 for 
unsteady-state conditions is approximated with the 
aid of the functions B : 

8=9-+.f 9= T/T,,, BEC’ (1) 

that are selected so that the corresponding variations 
of the solution f would be arbitrarily small. To min- 
imize the errors that can occur when using the 
approximations in equation (l), determine the func- 

tional for a non-linear nonstationary heat conduction 
problem. The existence of the functional extremum 
on the solution 9 will be considered allowing for the 
above-stated thermodynamic conditions. The studies 
show that to construct the variational functional of 
the problem in question, it is expedient to use the 
following thermodynamic function whose variation is 
determined as follows [l] : 

A’I’ = -T; 
s 

‘&($)dr. (2) 
0 

In the case of heat conduction in a solid body, the 
heat flux q(9), determined by the Fourier law of heat 
conduction q(9) = -1(9)9:, and the quantity Y 
depend only on temperature. Under these conditions 
‘I- is a function of state, and therefore the change in 
Y within the range (x0,x,) is equal to its variation at 
the boundaries x = x0 and x = x, : 

T;‘AY = - ” 
s {S 

xn(q($)9X+9q;(9)) dx 
0 x0 

(3) 

Using the differential heat conduction equation 
with a negative source q”(S) 

E(Q) = c(t!+$ - (n(9p:): -kg”(Q) = 0 (4) 

find q:(9) = -@(@XX): and from equation (3) deter- 
mine the functional 

The problem will be considered at the boundary 
conditions 

T,‘E(9) = q(x,,z)--1(9(x,,z))9:(x,,z) = 0 

9:(x,, 7) = 0. (6) 

After the substitution of approximations of equa- 
tion (1) into equation (5) it is easy to check that 
in the class of functions of equation (1) either the 
obligatory condition 6I= 0 at the sufficient condition 
#Z -C 0 or 6’Z> 0 for the existence of the extremum 
of functional (5) on the solution 9 are not satisfied, if 
the variations 61 and 6’1 are calculated in accordance 
with the requirement of the classical variational cal- 
culus that a differential equation should be an Euler 
equation for the functional. Therefore the existence 
of the extremum will be determined from the ther- 
modynamic conditions by considering the residuals 
of the differential equation (4) and of the boundary 
conditions (6) as fictitious heat sources. Then the func- 
tions of equation (1) will be the solutions of the prob- 
lem with fictitious sources E(O) and E(B), that is physi- 
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tally meaningful, and the variations of the solution 
S = 0 - 9 can be considered as a result of the effect of 
these sources. 

The solution 9 will be varied so that fictitious sour- 
ces E and E could increase the non-equilibrium state 
of the thermodynamic system (4), (5) and (6) for all 
the preceding values of r. In this case, with allowance 
for the above-considered thermodynamic conditions 
at the given initial temperature distribution 9(x,0) 
and heat transfer at the boundaries (6) the existence 
of the extremum of functional (5) on the solution 9 is 
possible. 

To determine the conditions of the existence of this 
extremum, integrate (5) by parts, and allowing for 
E(Q) = 0 in equation (4) find that the functional on 
the solution always vanishes : 

Z(9) = 7a 
ss 

xn t%(9) dx dz = 0. (7) 
0 x0 

In accordance with this expression the existence 
of the extremum of functional (5) can be found by 
determining the signs of its increment AZ, which is 
equal to the value of the functional AZ(e) 3 Z(Q). In 
this case, the sufficient conditions of the existence of 
the extremum on the solution 9 are determined by the 
inequalities 

Z(f?,) < 0 and Z(&,) < 0 or 

I@,) > 0 and Z(&) > 0 (8) 

that should be fulfilled uniquely for approximations 
to the solution 9 from below 0, and from above (3s. 
According to the aforementioned it is supposed that 
in a certain class of functions the maximum speed of 
the approach of the system to equilibrium corresponds 
to the solution 9, and for the approximations 0 the 
time for attaining the assigned values of temperature 
will be larger than for the solution of the problem 9. 
In view of the above, the verification of the existence 
of the extremum of the functional (5) on the solution 
9 in the class of functions (8) will be calculated during 
minimization of fictitious sources E and E. 

It follows from equation (7) that the functional (5) 
at E(B) = 0 expresses the orthogonality of the residual 
s(0) of equation (4) and approximations 8, thus sup- 
posing minimization of a(e). With the use of the func- 
tion Y, the orthogonality of e(B) and 6 in equation (7) 
is established not formally, but as a consequence of 
the physical condition equation (3). After the sub- 
stitution of equation (6) into equation (5) the func- 
tional will take into account the boundary conditions, 
as well as the effect of the fictitious source E(B) for 
any values of z. As a result of integration over x and 
r the effect of the functions I(0) and c(0) in equation 
(5) will be allowed for not only at the nodal points, 
but also inside the ranges (7,. z,, J and (x, xX+ J as 
variational calculus shows, this considerably improves 
approximation of the solution of the problem. It 
should be borne in mind that in the case of finite- 

difference approximations the effect of n(e) and c(0) 
can be taken into account only at the nodal points by 
substituting arbitrarily averaged numerical values of 
1 and c into difference equations. Inside the approxi- 
mating elements the functions L(9) and c(9) are 
approximated with substantial errors. This leads to 
the violation of the energy conservation law to which 
there corresponds an increase in fictitious heat sources 
and the solution variations associating with these 
sources. A specific feature of the functional (5) is the 
fact that the coefficients determined by it are inde- 
pendent of the start of temperature reading in the 
region. 

APPROXIMATION OF SOLUTIONS 

The errors of the variational solution approxi- 
mation that depend on the residuals of equations (4) 
and (6) can be reduced if an approximate solution is 
presented in the form of broken curves composed 
of piecewise-smooth elements (1) in space and time 
regions. In this case we shall also minimize the 
approximation errors at the discontinuity points of 
the gradients (&(x,)), and (0~(x,)),+,. It is obvious 
that with a certain choice of approximations it is poss- 
ible not only to reduce the value of fictitious sources 
a(0) and E(B), but also to compensate their mutual 
effect in a certain manner. The action of fictitious 
sources involves the origination of fictitious heat 
fluxes in the system that causes the corresponding 
variations off. 

The residuals of equation (4) at the points of con- 
jugation of the elements Bv are considered as a result 
of the action of surface fictitious sources at these 
points that cause the fluxes qi 

eqi(e) = n(ei){(e:(x,)),-(e:(xi))i+,> (9) 

to which there corresponds the variation of the func- 
tion AY 

T,-*AYj = -qi(e)e,. (10) 

Divide the section x,-x, into m intervals (xi,xi+,) 
and, integrating into equation (5) over x at fixed z,, 
find Z(0) for each interval. Then sum all Z(0) and, with 
allowance for equations (6) and (lo), determine the 
functional 

m-l 

G'ZCej> = 4(Xo9 ~j)%, Tji) + C thei i= 1 

-i$ ~+‘(c(e)pee:+eq~(e)+j.oR,Z) dx = 0. (1 I) 
x, 

For the conditions adopted in equation (11) Z(C),) = 0 
and E(6Jj) = 0, the sources e(ej) and q,(ej), acting at 
7 = rj, are mutually compensated in the region 
x0 < x < x,. Therefore the functional (11) will also be 
used as an equation for determining unknown 
coefficients. The values of Z(0) can also be calculated 
for the subregion x0 < xk (x, < x.). 
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Determine the approximating functions so that the 
fictitious source E in equation (6) on the surface 
x = x0 at time instants rj would be equal to the heat 
flux caused on the surface by the sources ~(0~) and 
qi(O,) with opposite signs and formulate the balance 
equation for fictitious heat sources [l] : 

T,‘Aq,(B) = E(0) - i 
5 

x’+’ c(0) dx = 0 
i=l x, 

T = 7,. (12) 

The quantity Aq,(& is a fictitious heat flux on the 
surface x at z # Z~ Regardless of the signs of the terms 
in equation (6), the source E in equation (12) should 
be equal to the difference of the moduli of heat fluxes 
behind and in front of the source E to which the 
quantities E = 141 --II&l and E = IL&l - )ql cor- 
respond to cooling and heating, respectively. 

To determine the values of Aq5 for the ranges 
z,, , - zj we find from equations (4), (6) (9) and (12) 
at qy = 0 and c = constant after integrating with 
respect to x and T 

m--l 
T,- ’ Aq, = “+I 

I ( 
q(-‘co> 7) + 1 qi 

> 
dz 

2, s.:j 

i= I 

cp(e(x,z,+,)-B(x,z,))dx = 0. (13) 
x, 

As a result of the action of fictitious sources E, qi and 
E, the value of Aqsm is equal to the change in the 
internal energy of a unit area within the range 
CTji, Tj+ 1). 

An analysis shovvs that, with a certain choice of 
approximations (1) and arbitrary small variations, 
and with an increase in the number of steps, i + co 
and j-t co, the residuals of equations (4) (6), (1 l), 
(12) and (13) can approach zero as a result of which 
Bij will approach the solution. This means that the 
variational scheme is adequate to a physical model of 
the heat conduction process within the residual of the 
equations used in calculations. 

ESTIMATION OF AN ERROR 

For the initial range (0,7,), select the approxi- 
mations &,(O, z,) and f&,(0, t,) that would satisfy the 
conditions 

E(e,,) G 0 e(e,,) > 0 

q&L) ’ 0 AG,,) < 0 (14) 

E(e,,) 2 0 e(eb,) < 0 

qi(eb,) < 0 Aqs(eb,) > 0 (15) 

at all 7 ??(0,7,), and also the initial condition 9(x, 0). 
Allowing for the fact that for the solution 9, being 
unique from physical considerations, the following 
relations are satisfied : 

E(9) = 0 E(Q) = 0 q&9) = 0 Aq,(9) = 0 (16) 

find that the solution 9 lies within the region which is 
bounded by the conditions of equations (14) and (15) 
and in which the residuals E, E and qi change their 
signs for the opposite ones. From the relation of equa- 
tion (12) it follows that at the boundary x = x0 the 
thermal balance for the fictitious sources E, E and qi 
will be negative in the case of Aq. < 0, ~E(O, 7) in 
equation (14) and positive in the case of the inequality 
of the opposite sense in equation (15). Then, accord- 
ing to the energy conservation law, Qa, and &, (0,, < &,) 
will be the approximations to the solution 9 from 
below and from above, respectively. 

Similarly find the approximations to &, from below 
Oa2 and to &, from above eb2. If it is necessary to 
estimate an error at the points xi inside the region 
(x0,x,), the conditions of equations (14) and (15) are 
written for each subregion x0 < xi and xi < x,,. In some 
cases approximations for large values of 7 can be 
reckoned from the values 9(x, co), which usually sim- 
plifies the estimation of an error [ 1, 21. 

The conditions of equations (14) and (15) can be 
satisfied for all z ~(0,7,) with rather a good choice of 
the functions 0 or with an increase in the number of 
steps j. It may happen that approximations of 0 will 
not satisfy the inequality Aq5 < 0, 740,7,). In this 
case we determine 6’ so that at a certain time instant 
7* within the range (0,7,) the function Aq, can change 
its positive sign once Aq, > 0, t ~(0,7*) for negative 
Aql < 0, 747*, 7,) and, moreover, the quantity of heat 
that passed through the boundary x = x0 within the 
range (O,T,) was the same as for the solution. The 
equality Aq,, = 0 corresponds to the latter condition. 
Then for the entire region x,-x,, an increase in the 
internal energy Aqsm, within the range (O,z*) due to 
the action of the flow Aq8 > 0 will be equal to the 
reduction of the internal energy Aqsm2 within the range 
(T*, z,), which is caused by the flux Aq5 < 0: 
Aq,, = IAqsm, I - l&n4 = 0. 

The action of the fictitious fluxes Aq8 > 0 and 
Aq8 < 0 is shifted in time. Therefore, in the region at 
some distance from the boundary x = x0 by the time 
instant 7, an increase in the internal energy, caused 
first by the flux Aq. > 0, will exceed the decrease in 
the internal energy caused by the flux Aqs < 0. Conse- 
quently, in this portion of the region fictitious fluxes 
will increase internal energy. Then, paying attention 
to the fact that by the time instant 7 the fictitious 
fluxes Aqs do not change the internal energy of the 
entire region x, -x0, we determine that a smaller 
amount of heat will be accumulated in the vicinity of 
the boundary x = x0, to which there corresponds the 
approximation to the solution Ba, < 9, (fa, < 0) from 
below. Similarly we find an approximation from 
above &,, > 9, (fb, > 0). 

The residual a(0) of equation (4) can change sign 
within the range (0,~~). Then the functions 0 are selec- 
ted so that at the boundary x = x0 the inequality 
Aq. < 0 would be satisfied for 7 ~(0,7,). As a result, 
at the boundary x = x0 within the range (0,7,) the 
negative thermal balance will be retained for fictitious 
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heat sources and the value of &, will be an approxi- 
mation to the solution 9,, @,, < 9, from below. Other 
approximations 0, and Qb are determined similarly. 

In the case of f(x,,, 7) = 0 and Aq,(B,,) = 0 at the 
boundary x = x0 the variation of the gradient 
f!(xo,7) = -E/il(x,,z,) that corresponds to the fic- 
titious flux E takes place, which compensates the 
action of the fictitious sources E and qi within the range 
(0,7,). Therefore, even atf(x,, 7,) = 0 the order of the 
approximation of the gradient 9: by integral 
expressions (12) and (13) will be lower than the order 
of the approximation of 9. 

mined by a corresponding selection of the functions 
0. Beyond the limits of this layer the derivatives 0: 
and 0: are taken to be equal to zero, which leads to 
the violation of the continuity of the derivatives and, 
as follows from the calculations, causes considerable 
errors. It should be noted that in finite-difference non- 
linear schemes the continuity of derivatives is usually 
one of the conditions in proving the convergence. 
However, in these schemes for small values of 7 one 
has to calculate some conditional depth of a heated 
layer, which is one of the reasons for large and diffi- 
cult-to-eliminate errors that cannot be estimated 
quantitatively 141. 

CHOICE OF APPROXIMATING FUNCTIONS 

An analysis shows that just as for the case of a 
steady-state regime, when 0: = 0, the condition 
AY (0) = 0 in equation (3) can be satisfied for rather a 
wide class of functions f3 E c2 that satisfy the boundary 
conditions. The residuals of the functional in equation 
(5) appear only after the substitution of the derivative 
0: from equation (4) into equation (3) and therefore 
the error of calculations with the aid of the functional 
in equation (5) depends mainly on the choice of the 
approximation of the derivative 0: that determines the 
change of the residual s(e) in equation (4) under 
unsteady-state conditions. The studies of analytical 
solutions of certain linear problems for small values 
of 7 show that with an increase in 7 the maximum of 
the derivative (e:),,, is usually shifted from the sur- 
face into the interior of the body [3]. At large values 
of 7 the maximum of (e:),,, for bodies of finite dimen- 
sions and symmetric conditions of heat transfer at the 
boundaries (a plate, a cylinder) occurs in the center. 

CALCULATION OF APPROXIMATIONS 

As an example, consider a problem of heating a 
semi-infinite space by a radiative-convective heat flux 

q(O,z) = cT~(l-94(o,7))+tlJ,(1-9(o,7)) (17) 

at the medium temperature T, = constant and initial 
condition T(x,O) = constant. Assume that c = con- 
stant and the coefficient 1 depends on temperature : 

n(e) = n,{i+~(e(~,~))-(e(x,o))k) 1, = 4~~3. 

(18) 

The solution is approximated by piecewise-smooth 
elements : 

Bi,, = l-y(l-P,(x,z)) y = l-T(x,O)/T,,,. (19) 

It follows from the calculations that by using the 
approximations Bid, that allow for the shift of (et),,,,, 
from the surface with an increase of 7, the number of 
steps i and j can be substantially decreased [2]. If for 
small values of 7 the approximations et,,, to which 
there corresponds the position of (e:),,, in the region 
for large 7, for example Bij = N(7) cos(pix), are used, 
then this variation of 0: can result in an increase of 
the source s(e) in each piecewise-smooth element t&. 
As a result, the errors caused by the source s(e) can 
be rather large. Approximations for small values of 7 
can be selected by analogy with the solutions of the 
similar linear problems, assuming that after the intro- 
duction of the corresponding coefficients these func- 
tions can, to a certain degree, express the above-men- 
tioned character of the shift of (e:),,, for non-linear 
conditions. 

With allowance for the above stated, in order to 
determine the functions F,(x,z), to which the shift 
inside the region (Q,,,, corresponds, we shall use the 
solution for a semi-infinite body at i = constant and 
c = 0 [3] : 

F, (x, 7) = erfc z1 

-vexp(&x+z:)erfc(rprz2 fq2z1 +vG~) (20) 

and introduce the following parameters and notation 

z, = 0.5x/J(m) z2 = hjJ(mj 

z3 = {h,2a(7,-z)}‘,’ 

a = I/(~~) hj = m(ej)/n(o, 7j) 

a(Qj) = T;lq(e(O, 7,))/(l -e(O, 7,)). 

The coefficients p, v and rp, as well as the quantity 
Q3z3 allow for the non-linearity in the problem with 
conditions of equations (11) and (17). For small 
values of u calculate erfc u = 1 - erf u by an asymp- 
totic expansion [5] : 

Calculations of equations (1 l)-( 13) also show that 
for a semi-bounded space, as well as for small values 
of 7 the approximating functions 0 are to be selected 
so that they can always enable the provision of con- 
tinuity of the derivatives within the entire region of 
integration, which corresponds to the physical model 
of the process. In some schemes of approximations 
during the calculation of the heating processes one 
uses the depth of the heated layer x,(7) that is deter- PI : 

erfu=L f 
U2”+ 1 

Jn n=O n!(2n+l)’ 
u < 0.9. 

When u > 0.9, we find erfc u using the approximations 
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Table 1. The values of the temperature 0 in a semi-bounded space under non-linear conditions of 
heat transfer 

x lo3 [m] 5 10 15 20 2.5 30 

0 0.2689 0.2759 0.2811 0.2854 0.2851 0.2925 
50 0.2600 0.2671 0.2723 0.2767 0.2805 0.2839 

100 0.2544 0.2602 0.2649 0.2690 0.2727 0.2761 

erfc u = (1 + 0.2784uf 0.2304~~ 

The derivatives of the probability integral are deter- 
mined in an ordinary way (erf u): = 2 exp( - u*)/Jn. 
The coefficient p is calculated from the boundary con- 
dition of equation (5). Successively applying linear 
interpolation, we find from equations (11) and (13) 
the values of ‘p, and (p2, respectively. The coefficient v, 
is determined accounting for the conjugation of 
the elements Bij with iterations j- 1 and j: 
6(x, zj, vi_,) = 0(x,, zj, v,). The value of (p3 is found 
from the condition Aqsm = 0. In the course of cal- 
culations we verify the minimization of the functional 
Z(0) < 3 x 10-4. 

Table 1 presents some results of calculations for the 
following conditions: T, = 1200 K, T(x,O) = 300 K, 
C=4x10-8Wm~~2K-4,&=40Wm~‘K-‘,~=2, 
k = 0.5, E, = 50 W m-* K-‘, cp = 4 x lo6 J rnp3 K-‘, 
qv = 0. At r = 10 s and x = 0 the coefficients are : 
p = 1.0192, v = 1.005, ‘p, = 1.2455, (p2 = 0.9961, 
(p3 = 15.93. The error of calculations for the given 
values of Q(0, r) does not exceed 0.5%. 

In accordance v&h conditions of equations (7) and 
(8) the existence of the extremum of the functional of 
equation (11) is checked at some points by shifting 
the start of the reading of the values of Z(0) by 5, : 

z(e)+51 = 0. (21) 

Until now one has failed to study sufficient con- 
ditions for the existence of extrema for variational 
functionals in many of the problems of mathematical 
physics. Therefore, some authors suggest seeking 
extremal points only by the necessary condition from 
the system of equations of the form I; = 0, < = 0, etc. 
It follows from the calculations that for the functional 
of equation (5) this method turns out to be ineffective, 
since in this case it is necessary to perform numerical 
differentiation. Moreover, the equations obtained can 
correspond to the inflection points, as a result of which 
the search for the extremum can turn out to be imposs- 
ible, and the sense of the variational formulation is 
lost. 

ANALYSIS OF THE RESULTS 

The calculation:s show that the suggested vari- 
ational method enables us to considerably improve 

approximation of the solutions of non-linear prob- 
lems if approximating functions allow the min- 
imization of the residuals and equations (4), (6), (11) 
and (12). Expressions (11) and (12) are the integral 
equations of heat balance and therefore the 
coefficients determined from these equations cor- 
respond to the conditions, when the effect of fictitious 
sources is compensated both at separate points and 
on average, over the region 0 < x < co. An error of 
variational calculations with the aid of the functional 
of equation (5) diminishes by an order or more com- 
pared to the results obtained by the finite-difference 
method. With finite-difference approximations the 
values of temperature for small values of r can differ 
by 5&100% only, due to choice in the way of aver- 
aging the coefficient L(e) [4]. In this case fluctuations 
of the approximations 0 in the spatial region often 
take place which contradict the physical sense of the 
problem. 

Minimization of errors in approximation of solu- 
tions greatly depends on the choice of approximating 
functions which, as known, is typical of the variational 
methods. Piecewise-smooth elements, that allow for 
the shift of the maximum of the derivative (&),,, in 
the spatial region with time, approximate the solution 
of the considered problem much better than other 
known approximating functions e.g. cubic splines. On 
using the above-presented variational method, the 
efficiency of the choice of the approximations eij can 
be verified at first steps i and j; in the case of a sat- 
isfactory choice of Bjj the initial values of the cal- 
culated coefficients turn out to be close to their finite 
values, which considerably reduces computer time 
expenditures for testing the functions and calculating 
the first approximations of 19~~ The obtained solutions 
can, in fact, represent analytical expressions for some 
piecewise-smooth elements, and this can simplify the 
subsequent analysis and the use of the obtained 
results. On applying the familiar approximate 
methods (cubic splines and finite-difference elements), 
the problem of choosing approximating functions 
does not arise. However, in this case in problems with 
a strong non-linearity it appears impossible to take 
into account all the fictitious sources and variations 
of the solution which can be rather large. Calculations 
show that in the case of an unsatisfactory choice of 
the approximations Bij, the residuals of the above- 
presented equations cannot be minimized. Therefore, 
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when using other approximate methods, which, in 
accordance with the above, usually do not approxi- 
mate the solutions of non-linear problems so well, the 
minimization of errors can become considerably more 
complicated. 

During approximation of solutions, all the possible 
errors are considered that are taken into account by 
fictitious heat sources E(q) and E(q) in equations (4) 
and (6). In this case, using the first law of thermo- 
dynamics, it is possible, during calculations, to esti- 
mate the signs of fictitious sources. This enables one 
to suggest a reliable and thermodynamically justified 
method of estimating errors for variational approxi- 
mations of a solution and to find approximations to 
the solution from below and from above. 

When the boundary condition of equation (6) is 
satisfied allowing for expression (7), functional (11) 
determines the orthogonality of the residual e(0) of 
equation (4) and of the approximations 0, thus mak- 
ing it possible to minimize a(0). In contrast to pro- 
jective methods with the use of orthogonalization, for 
example, of the Galerkin method, the conditions of 
orthogonality of equations (7) and (11) are found 
from the physical condition of equation (3) and are 
written for the approximations 0 as a whole but not 
with respect to separate elements of the series expan- 
sions of 8, thus expanding the class of possible 
approximations. If, while performing iterations by 
projective schemes, the functions satisfy conditions of 
equations (8), (14) and (15), then these solutions can 
be considered variational. The fictitious sources of 
equation (9) can be eliminated by determining some 
of the coefficients in equation (20) from the condition 
of the equality of the gradients at the points of the 
conjugation of the elements BiJ by analogy with 
splines. For the problem considered, the action of 
sources in equations (9)-(12) are used to addition- 
ally compensate the residual a(0). 

It should be noted that prior to the development of 
numerical methods similar constructions of approxi- 
mations were used by solving physically close prob- 
lems. For example, for approximate calculations of 
the solidification of metals, the problems of the change 
of physical state in a semi-infinite space, obtained by 
Stefan and Lightfoot [3], were successfully used for 
constructing heat balance equations. The efficiency of 
these kind of approximations confirms the expediency 
of the choice of the approximations 6 by analogy with 
the well-known solutions of linear problems. Cal- 
culations show that with such a choice it is possible 
not only to improve approximations, but also to con- 
siderably simplify the determination of approximating 
functions, which can turn to be very laborious for 
non-linear variational problems. 

CONCLUSION 

The variational method suggested for the non- 
stationary heat conduction problems is based on a 
thermodynamic analysis of arbitrary variations of the 

solution of non-linear problems with allowance for 
the directivity of the processes of heat transfer in a 
closed system, which distinguishes this approach from 
the classical variational calculus. Earlier attempts to 
obtain a variational functional for the problem in 
question by the existing methods of variational cal- 
culus turned out to be unsuccessful due to specific 
features of a non-linear heat conduction equation. In 
the present paper the functional for unsteady-state 
heat conduction is determined that allows one to 
solve the problems with a strong non-linearity sim- 
ultaneously both in the region and at the boundaries, 
including semi-bounded regions and small values of 
z. Finite-difference schemes do not make it possible 
to obtain satisfactory results and correctly estimate 
their authenticity for these problems. The functional 
in equation (5) can be generalized to a three-dimen- 
sional space and also transformed for other coor- 
dinate systems [ 1, 21. 

In accordance with the second law of thermo- 
dynamics the extremum of the functional in equation 
(5) realized in a certain class of approximating func- 
tions 0 should exist on the problem solution 9. Here 
it is supposed that at the extremal point for the solu- 
tion 9 there exists the maximum speed of the approach 
of the system to an equilibrium state 9: relative to the 
same speed for arbitrary approximations 8, and f&,. 
Variational calculus performed for various conditions 
of the problem show that in the case of the choice of 
functions, to which there correspond the maximum 
values of the derivatives (3: at some points, the 
approximation of the solution is substantially 
improved. Thus, with a certain choice of approxi- 
mations 0 functional (5) allows for a thermodynamic 
regularity determining the directivity of real non- 
equilibrium processes towards equilibrium with the 
environment. This result indicates the adequacy of 
physical and mathematical models for the considered 
problem from the viewpoint of the second law of 
thermodynamics. 

The above implies that with a corresponding choice 
of approximations 0 the proposed functional of equa- 
tion (5) will minimize the errors of the approximation 
in the problems of unsteady-state heat conduction 
rather well, which is confirmed by variational cal- 
culations. In particular, the coefficients determined 
from the conditions of the existence of the extremum 
of the functional of equation (5) can coincide, up to 
the fourth sign, with the corresponding coefficients for 
exact solutions. It should be noted that the functional 
of equation (5) is one of the possible applications 
of the second law of thermodynamics for studying 
irreversible processes. As is known, for these con- 
ditions the second law of thermodynamics can be pre- 
sented in the form of inequalities that substantially 
limits its use. 

Calculations show that the use of variational 
methods appears to be effective if sufficient conditions 
for the extremum existence on the solution are found 
and arbitrary small variations are studied near 
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extremal points corresponding to the solution and a necessary to analyze the variational problem and to 
theoretically substantiated estimation of an error is estimate all the possible heat sources that after the 
possible. Under these conditions the verification of choice of approximating functions Bij will be deter- 
the existence of the extremum on the solution can also mined. The described variational principle based on 
be used as an additional means for controlling the minimization of fictitious sources can similarly be used 
results obtained. Since, during minimization of vari- in a variational analysis of other problems of math- 
ations all the possible errors are taken into account, ematical physics, if in their formulation certain con- 
this allows one, based on the first law of thermo- servation laws are used. 
dynamics, to suggest the method for estimating ap- 
proximation errors in variational calculations ; this 
could not be accomplished until now. 1. 

The approximation to 9 by the solutions of the 
problem with fictitious sources BiJ should be per- 2, 
formed correctly in a thermodynamic sense. If in this 
case some residuals of equations or really existing 
variations of the solution f = 0 - 9 are not taken into 3. 

account, then due to the violation of the energy con- 4, 

servation law, an terror will be accumulated. Then 
the extremum will exist on the solution of another 
problem with fictitious sources that differs from the 5’ 
studied one in which fictitious sources are absent. 
Therefore, before calculating the coefficients it is 
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